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Abstract  
With the promotion of global educational equity and quality education under the United 
Nations Sustainable Development Goals (SDGs), technology-assisted instruction has 
become a critical pillar in engineering education. This study aims to apply computer 
vision and deep learning technologies to electronics circuit lab teaching, enhancing 
learners efficiency and addressing fairness issues in experimental assessment. 
Traditional assessment methods for electronics experiments focus on experiment 
success or failure, which may fail to accurately reflect the efforts of some students. To 
address this, the study developed an intelligent experimental assessment system based 
on computer vision, capable of accurately identifying the number and position of 
components amidst environmental noise. Combined with deep learning for experiment 
classification, the system provides dynamic scoring and subsequent operational 
suggestions based on the recognition results, thereby improving learners understanding 
and interest in electronics experiments. The system leverages image processing to filter 
external noise and accurately extract key experimental features. To enhance adaptability 
and versatility, the system supports automated recognition and scoring across various 
experimental scenarios. Experimental results demonstrate that this system not only 
reduces the workload of educators but also significantly increases learner engagement 
and learning outcomes. The study contributes to integrating technological innovation 
into engineering education, achieving the SDGs vision of educational equity and 
quality education. 
 
Keywords: Technology-Assisted Engineering Education, Computer Vision in 
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1. Introduction 
With the implementation of the Education 4.0 policy, the integration of technology in 
education has become a key driver in achieving the Sustainable Development Goals 
(SDGs) [1], [2]. Launched by the United Nations in 2015, the SDGs aim to address 
global social, economic, and environmental challenges while ensuring a sustainable 
pathway for future generations [3]. Among these goals, SDG4 is particularly relevant 
to education, as it emphasizes accessible, inclusive, and high-quality education for all 
[4], [5]. This goal aligns closely with the aims of engineering education, especially in 
the context of improving hands-on experimental learning environments such as 
electronics and circuit laboratories. 
 
Higher education institutions play a vital role in achieving these goals by fostering 
innovation and promoting equitable learning environments [6]. The exponential growth 
in sustainability-related publications reflects academia's increasing engagement in 
addressing the 2030 Agenda [7]. However, the challenge remains to translate these 
global goals into practical applications within specific educational contexts. For 
engineering education, this means integrating intelligent systems to improve 
instructional quality, assessment fairness, and learning outcomes. 
 
In this light, SDG4’s emphasis on lifelong learning and equitable access intersects with 
the evolving needs of engineering disciplines. Objectives such as advancing gender 
equality, fostering employability, and creating supportive learning environments 
directly relate to the goals of foundational technical courses, including electronics and 
circuit experiments [8], [8], [10]. These laboratory-based courses provide opportunities 
not only for technical knowledge acquisition but also for developing critical thinking 
and problem-solving skills in alignment with SDG9 (Industry, Innovation, and 
Infrastructure) and SDG12 (Responsible Consumption and Production) [11], [12], [13]. 
 
As noted in [14], education and media are key drivers of sustainable development 
mindsets. In engineering education, which addresses complex real-world problems, 
fostering such mindsets is particularly essential. Despite this, traditional laboratory 
courses face challenges in delivering innovative and resource-efficient teaching. 
Electronics and circuit laboratories, in particular, encounter persistent issues related to 
outdated assessment methods, inefficient feedback mechanisms, and unequal learning 
opportunities [15], [16]. These issues limit student engagement and hinder the 
realization of sustainability objectives within the classroom. 
 
A relevant illustration of hands-on STEM education’s importance can be seen in the 



"miniXplore" initiative by the Technical Museum Vienna [17]. While targeting early 
learners, this program exemplifies how interactive, fail-safe, and explorative 
environments can stimulate interest and creativity—values equally crucial in 
engineering education. Electronics laboratories, as foundational courses, must evolve 
toward similar learner-centered, feedback-rich models that align with SDGs and 
modern educational expectations. 
 
However, electronics laboratory courses often rely on binary grading—either the circuit 
works or it doesn't—which fails to reflect students' efforts or partial correctness. This 
creates motivational barriers, particularly for beginners. The increasing class sizes 
exacerbate the issue, making manual grading labor-intensive and less consistent [18], 
[19]. GenAI tools offer a promising solution by providing real-time diagnostic feedback, 
automated scoring, and adaptive learning support. In this context, the integration of 
computer vision and AI technologies into electronics experiments not only aligns with 
sustainable education objectives but also directly addresses fairness, efficiency, and 
learner engagement [20], [21]. 
 
This study builds upon these foundations by developing an intelligent experimental 
assessment system that leverages deep learning and computer vision. The system is 
designed to recognize components and their placement on breadboards, assess 
correctness, and offer dynamic, personalized feedback. This supports students in 
understanding errors, refining skills, and achieving better learning outcomes. Moreover, 
the system aligns with the goals of Industry 4.0 and future transitions toward Industry 
5.0 by promoting competency-based learning, automation in assessment, and data-
informed feedback loops [22], [23]. 
 
To remain responsive to industrial and educational evolution, many universities have 
adopted Competency-Based Education (CBE) and Competency-Based Curriculum 
(CBC) approaches [24], [25]. These models aim to equip students with real-world skills 
and provide flexible learning paths. This study contributes to such efforts by offering a 
system that not only evaluates student performance with precision but also supports 
curriculum innovation. Through the integration of intelligent technologies, this research 
proposes a scalable and sustainable approach to laboratory instruction, thereby 
addressing educational equity, resource efficiency, and pedagogical innovation in 
engineering education [26], [27], [28], [29], [30], [31]. 
 
The introduction of AI-based systems in electronics laboratories represents a practical 
and impactful step toward achieving SDG4 in engineering education. This study 



presents a concrete implementation of such a system, with evidence supporting its 
effectiveness in promoting fairness, accuracy, and student engagement in assessment 
practices. 
 
To address these challenges, this study developed an intelligent grading and learning 
assistance system specifically designed for electronics and circuit laboratory courses by 
integrating computer vision and deep learning technologies. The system aims to 
enhance teaching efficiency, ensure educational equity, and promote sustainable 
resource use, aligning with relevant Sustainable Development Goals (SDGs). The 
primary objective is to transform the teaching methods of electronics and circuit 
laboratory courses through technological innovation. The specific goals include: 
 
1. Promoting Educational Fairness through a Diversified Grading Mechanism 

(Aligned with SDG 4: Quality Education) 
Traditional binary grading mechanisms overlook the effort and details involved in 
experimental processes [32], [33]. As illustrated in Fig. 1, this system leverages 
computer vision technology to analyze component placement, quantity, and 
connections during experiments, providing granular grading. For example, students 
who complete most of the operations correctly but fail due to minor errors can receive 
near-full marks, objectively reflecting their learning outcomes and promoting 
educational fairness. 
 
2. Integrating Innovation with Foundational Education to Support Engineering 

Education Innovation (Aligned with SDG 9: Industry, Innovation, and 
Infrastructure) 

The system incorporates deep learning models to automatically identify multiple types 
of experiments. By analyzing the types, quantities, and layouts of components, the 
system can accurately distinguish different experiments and offer specific operational 
suggestions [34]. This not only enhances the system's flexibility and versatility but also 
promotes the application of knowledge and innovative practices in electronics and 
circuits, laying the groundwork for future intelligent laboratories [35]. 
 
3. Enhancing Resource Utilization Efficiency and Reducing Experimental Material  
Traditional manual grading often requires repeated debugging and adjustments, 
increasing hardware equipment and material consumption. This system minimizes 
material waste through digital grading and assistance, helping students identify and 
correct errors at an early stage [36]. Its automation significantly reduces time and 
human resource costs in teaching, further advancing the sustainable use of educational 



resources [37]. 
 
4. Improving Student Learning Experiences and Stimulating Innovative Thinking 
Another core function of the system is to provide detailed improvement suggestions 
based on grading results. For example, when students fail due to improper wiring, the 
system can combine image data to analyze specific errors, helping students quickly 
identify and correct problems [38], [39]. This design not only lowers the learning barrier 
but also inspires students’ interest and enthusiasm for electronics and circuit 
experiments, enhancing their innovative capabilities in the engineering field [40]. 
 
5. Supporting the Development of Sustainable Educational Models 
The proposed system aligns with the requirements of SDGs by improving educational 
quality while focusing on efficient resource utilization and promoting innovative 
technologies [41]. It offers feasible solutions for future engineering education, fostering 
deeper integration between education and societal needs [42]. 
 
In the future, this system can be expanded to other engineering education courses, such 
as mechanical design, materials testing, and automation control, enabling broader 
educational innovation [43]. By integrating with virtual laboratory and remote 
education technologies, the system can provide cost-effective engineering education 
solutions for regions with limited educational resources, promoting educational equity 
and inclusivity [44], [45]. 
 
2. Using artificial intelligence and deep learning to promote the sustainable 

development of engineering education 
Artificial intelligence (AI) plays a crucial role in advancing sustainable practices within 
Industry 4.0 technologies. AI simulates human intelligence to perform tasks such as 
learning, reasoning, problem-solving, and decision-making [46]. The emergence of AI 
tools is transforming engineering practice, research, and education [47]. Early 
milestones include the Turing Test, which evaluates whether a machine can mimic 
human intelligence [48]. Turing emphasized that computer-assisted teaching should 
refine students thought processes and help overcome learning challenges [ 49]. By the 
1960s, computer-based teaching experiments began, offering personalized instruction, 
such as adapting linear algebra lessons to individual learning paces [50]. Later 
advancements added tailored content and real-time feedback, significantly improving 
instructional effectiveness [51]. Today, AI-powered systems analyze text and images to 
provide meaningful feedback, making automated grading widely applicable in 
education and enhancing assessment efficiency and accuracy. 



 
Higher education is undergoing significant transformation due to advancements in 
information technology [52]. Remote learning enabled by modern communication 
technologies has redefined the roles of teachers and students, positioning students as 
active learners who use technology to solve problems innovatively [53]. AI 
advancements are reshaping engineering education by analyzing student data to identify 
individual needs and create personalized learning paths. Deep learning enhances 
automated assessment systems, enabling efficient evaluation and targeted feedback. 
These tools support personalized learning, automate problem-solving, and transform 
how students grasp complex concepts and how educators guide learning [54], [55]. 
 
Advancements in AI and deep learning have expanded the potential of technology-
assisted education to support sustainable engineering education [56]. For instance, Guo 
et al. highlighted that AI can automate data analysis to support decision-making and 
management processes, advancing SDGs [57]. Wang et al. identified four development 
areas for ChatGPT in manufacturing engineering: human-machine collaboration, 
knowledge management, design innovation, and engineering skills education [58]. 
Daun and Brings argued that ChatGPTs ability to generate code shifts the focus of 
software engineering education toward software design and architecture [59]. These 
technologies enhance teaching efficiency and foster innovation by optimizing resources 
and reducing repetitive tasks. Compared to traditional methods, technology-assisted 
education offers unparalleled flexibility and access to diverse content. Although face-
to-face interaction may decrease, AI promotes personalized learning and provides 
teachers with effective support, particularly for students with special needs, thereby 
fostering equity and inclusivity [60]. 
 
Automated scoring systems have significantly advanced, achieving reliability on par 
with human evaluation [61]. AI-driven text scoring systems address inconsistencies in 
open-ended question evaluation and improve teaching efficiency. For instance, Wang 
et al. proposed a BiLSTM-based essay scoring system, while Li et al. developed a 
smartphone-based scoring tool using DeepLabv3+ [62]. In programming education, 
automated tools like Code Assessment Extension efficiently grade C++ assignments, 
meeting the rising demand in engineering disciplines [63]. Studies on AI applications, 
such as GPT-4 in discourse evaluation and manuscript review, show alignment with 
human reviewers, particularly for low-quality submissions [64]. Despite these 
advancements, challenges persist, including ensuring academic integrity and addressing 
student hesitations toward adopting AI tools. Research highlights factors like trust and 
concerns over automation influencing technology adoption [65], [66]. 



 
Understanding the psychological, cultural, and technical factors influencing AI 
adoption can improve its accessibility and acceptance. By addressing students concerns, 
educators can better integrate AI tools into learning environments, ensuring alignment 
with students engagement and readiness [ 67]. AI and deep learning technologies 
enhance teaching efficiency, redefine teacher-student interactions, and support 
personalized learning, automated assessments, and experimental teaching. These tools 
promote equitable resource distribution, enabling students to develop innovative skills 
and adapt to industry demands. By reducing repetitive tasks, educators can focus on 
advanced teaching and innovation, fostering sustainable education models [68]. As 
technology advances, AI and deep learning are set to drive engineering education, 
integrating technology with education and supporting global sustainability goals. 
 
3. System Design and Implementation 
This study leverages deep learning models to perform structured analysis of circuit 
boards. Based on the error types and component placement information output by the 
model, it generates operational recommendations. These recommendations include 
examples of correct wiring, possible error cause prompts (such as component polarity 
issues), and are visually presented to users within the system interface. Furthermore, to 
ensure the accuracy of the recommendations, the system dynamically calibrates itself 
using historical data, optimizing the model's classification and recommendation 
capabilities. This study highlights the potential applications of AI and deep learning in 
electronic circuit experiment education. These technologies not only optimize teaching 
processes but also reshape educational assessment paradigms [69], [70]. By leveraging 
intelligent systems, educators can reduce the burden of grading and experiment result 
validation, allowing them to focus more on fostering students' innovative abilities. 
Simultaneously, students benefit from diverse and adaptive learning environments, 
enabling them to acquire experimental skills more effectively while enhancing their 
learning interest and efficiency. More importantly, the application of AI and deep 
learning offers sustainable development opportunities for engineering education [71], 
[72]. The efficiency and versatility of intelligent teaching systems enable a more 
equitable distribution of educational resources, narrowing the educational gap between 
urban and rural areas or under-resourced regions. Additionally, these technologies 
facilitate a shift towards data-driven educational models through automated data 
analysis and real-time feedback, laying a solid foundation for the future of engineering 
education. As these technologies continue to mature, AI and deep learning are set to 
become indispensable drivers of progress in engineering education, contributing to the 
achievement of global educational sustainability goals [73], [74]. 



 
3.1 Overall System Architecture and Intelligent Methodology 
This system leverages deep learning models to perform structured analysis of circuit 
boards. Based on the error types identified by the model and the placement information 
of components, it generates operational recommendations. These recommendations 
include examples of correct wiring, potential error cause hints (such as incorrect 
component polarity), and are visually presented to users through the system interface. 
Furthermore, to ensure the accuracy of the suggestions, the system dynamically 
calibrates using historical data, optimizing the model's classification and 
recommendation capabilities. 
 
In introductory electronic circuit education, expecting learners to directly execute 
experiments based on complex circuit schematics is impractical [75]. To lower the 
learning curve, many electronic circuit textbooks adopt breadboard circuit diagrams, as 
seen in resources provided by platforms like ELECTROTHOUGHTS, Makezine, and 
Taiwan’s IoT education platform CAVEDU. Breadboard circuit diagrams provide 
beginners with an intuitive and operationally accessible reference, helping learners 
comprehend the connections between circuit components clearly while cultivating good 
practices for maintaining tidy and legible circuit boards, which lays a strong foundation 
for advanced learning. 
 
This research focuses on the commonly used solderless breadboard as the core object 
for system recognition and evaluation. Regarding the application of computer vision in 
electronic circuit experiments, this study accounts for the fact that a single circuit design 
can involve hundreds of possible wiring configurations. For instance, experiments 
utilizing integrated circuits (ICs) may present diverse scenarios due to variations in pin 
connections, IC orientation, and wiring across rows, which increase the complexity of 
recognition tasks. Such uncertainties often lead traditional recognition systems to 
encounter false negatives or detection errors. To address these issues, this study 
imposes specific constraints on the placement rules of circuit board components to 
ensure the recognition system effectively processes experimental results and delivers 
accurate assessments. Moreover, the complexity of circuit board wiring is a major 
challenge for computer vision recognition; therefore, experimental conditions are 
designed to minimize unnecessary wiring interference [76], [77], [78]. 
 
To enhance recognition efficiency, the study introduces AI and deep learning 
technologies for component localization and analysis in electronic circuit experiments. 
Through deep learning models, such as convolutional neural networks (CNNs), the 



study achieves high-precision recognition and positioning of breadboard components 
[79], [80]. The adaptability of deep learning allows the system to handle diverse 
component arrangements, overcoming limitations faced by traditional computer vision 
systems and improving overall recognition stability and accuracy. This intelligent 
system not only boosts teaching efficiency but also creates a more learner-friendly 
environment, lowering the barriers to learning [81]. 
 
In specific experiments, the computer vision system identifies components based on a 
structured left-to-right, top-to-bottom arrangement on the circuit board. Components 
are divided into three sections: upper, middle, and lower, according to the board's 
separation regions. This structured approach ensures accurate relative positioning 
among components, especially in dense layouts where misplacement could lead to 
recognition errors and affect grading results [82]. To mitigate these issues, this study 
assumes users follow provided standard component distribution guidelines and that all 
components are functional, ensuring a stable and controlled experimental environment. 
 

     
Fig 1. Circuit Diagram and Breadboard Circuit Diagram 

 

3.2 Experimental Setup and Assumptions 
Data preprocessing is a critical step in successfully implementing electronic circuit 
recognition [83]. Since images captured during experiments may be affected by noise, 
including external objects on the circuit board or variations in lighting conditions, the 
study employs a series of AI-based image processing techniques to ensure clean and 
suitable data inputs for the recognition system. To achieve this, the images are first 
converted to grayscale during preprocessing, which helps reduce computational load. 
This is followed by the application of Otsu’s binarization algorithm combined with 
Gaussian blur to remove unnecessary details and enhance the clarity of the images [84], 
[85]. Morphological operations, such as opening operations, are used to effectively 
remove minor noise while preserving key features of the image. Finally, Canny edge 



detection and contour-finding techniques accurately identify the circuit board’s 
boundaries and component regions. Notably, the integration of deep learning introduces 
additional possibilities for data preprocessing. By using deep learning models for 
feature extraction, the system achieves more precise component localization and 
contour detection, automatically adapting to different experimental environments and 
lighting conditions [86]. Furthermore, leveraging the capabilities of convolutional 
neural networks, the study automates the classification and analysis of data during 
experiments, significantly improving the efficiency of data processing [87], [88]. 
 
Beyond identifying components and circuit boundaries, the system extends its 
computer vision capabilities into an integrated assessment and feedback mechanism. 
Once components and their relative positions are extracted through edge detection and 
contour recognition, the system matches the observed layout against predefined 
templates stored in the experiment database. These templates represent correct circuit 
configurations and are indexed by experiment type, component quantity, and functional 
layout. 
 
Through this comparison process, the system automatically evaluates the correctness 
of each component’s type, placement, polarity, and connectivity. A dynamic scoring 
algorithm then calculates a partial or full score based on the level of match with the 
expected configuration. In addition to numerical scores, the system generates 
qualitative feedback by identifying the specific errors in the student’s setup. For 
instance, if a capacitor is placed in the wrong row, the system flags the discrepancy and 
overlays a highlighted guide showing the correct placement directly on the circuit 
image interface. 
 
This dynamic feedback loop is further enhanced by an AI-driven error classification 
module trained on historical data from previous users. By recognizing recurring error 
patterns, such as reversed polarity for LEDs or incomplete wiring connections, the 
system proactively suggests targeted instructional prompts and corrective tutorials. 
These are presented in real-time during the lab session, allowing students to reflect on 
mistakes and apply corrections immediately, thus reinforcing learning through active 
experimentation. 
 
Additionally, the system logs each student’s interaction data and error history, which 
can be used to adapt the difficulty level of future tasks or recommend supplementary 
exercises. This personalized feedback strategy not only increases engagement but also 



ensures a deeper understanding of the circuit design principles, fulfilling the system’s 
dual function as both an evaluator and an intelligent tutor. 
 

 

  

Fig 2. The Process by which an AI-assisted System Performs Component 
Identification and Error Detection on a Circuit Board. 

 
3.3 Computer Vision Pipeline and AI-Based Preprocessing 
This study targeted undergraduate students from the College of Engineering at a 
university in Taiwan, involving a total of 84 participants. The students were divided 
into a control group (CG) and an experimental group (EG), with 42 students in each 
group to ensure balanced and representative sampling. The control group followed a 
traditional lecture-based teaching approach, focusing on foundational knowledge of 
electronics and circuit experiments, where the instructor guided students to complete 
experimental tasks during class. In contrast, the experimental group utilized an 
intelligent learning assistance system integrating AI and deep learning technologies. 
This system served as an instructional medium to support students learning and 
operational tasks during experiments. At the beginning of the course, a pre-test was 
administered to all participants using a standardized skill assessment scale to measure 
their baseline knowledge and experimental skills. During the initial phase of the course, 
the same instructor delivered unified foundational knowledge to all students. This 
ensured a common baseline of understanding, mitigating the potential influence of 
initial disparities on subsequent experimental outcomes. As the course progressed, 
differences in instructional models emerged. Students in the control group performed 
electronics and circuit experiments using the traditional method, with the instructor 
responsible for guidance and evaluation. Meanwhile, students in the experimental 
group completed their experiments with the intelligent learning assistance system. This 
system leveraged computer vision technologies to provide real-time analysis and 
feedback on students’ experimental operations, offering targeted suggestions and 



corrective directions. It enabled students to identify and rectify errors promptly. Beyond 
operational assistance, the system also facilitated a detailed and diversified evaluation 
of students based on their experimental process. At the end of the course, all students 
underwent a post-test based on a unified assessment framework. The evaluation 
included measuring their mastery of experimental skills and their ability to apply 
theoretical knowledge. Additionally, feedback was collected from the experimental 
group on their experience with the intelligent system, which helped refine the systems 
functionalities and applicability. Through a systematic comparison of the control and 
experimental groups, this study investigated the application of AI and deep learning 
technologies in teaching electronics and circuit experiments. It analyzed their 
effectiveness in enhancing learning outcomes, optimizing resource utilization, and 
promoting educational equity, providing empirical support for the innovation of future 
engineering education models. 
 

 

 
Fig 3. Research Flowchart 

 



  

Fig 4. Experimental Group Course in Progress 

 

4. Experimental Questionnaire and Analysis 
This study involved 84 undergraduate engineering students, equally divided into 
experimental and control groups, to evaluate the impact of an intelligent assistive 
system on their digital literacy, laboratory operational skills, and engineering self-
efficacy in electronics and circuits laboratory courses. The assessment framework was 
based on dimensions such as technical application proficiency, experimental operation 
skills, and error diagnosis and correction abilities. 
 
Technical application proficiency evaluated students’ familiarity with simulation 
software, hardware testing instruments, and hands-on operational performance in 
digital environments. Experimental operation skills measured students’ accuracy in 
identifying components, wiring, and tool usage, providing a comprehensive view of 
their foundational competencies. Error diagnosis and correction abilities focused on 
students’ capacity to use system prompts for troubleshooting and resolving 
experimental issues. Additionally, the dimension of digital media information 
management skills was used to evaluate students’ ability to search for, evaluate, and 
apply experiment-related information. 
 
The engineering self-efficacy scale measured students’ confidence in performing 
technical tasks, their problem-solving abilities, and their motivation for engaging in 
engineering learning. Engineering task confidence assessed students’ ability to 
complete operations such as component placement and debugging. Problem-solving 
abilities evaluated their confidence in resolving experimental challenges, while 
motivation for engineering learning reflected their persistence and enthusiasm for 
engineering tasks. Self-efficacy, as the belief in one’s ability to perform tasks, plays a 
critical role in students success and persistence [ 89], [90]. 
 



To address the social aspects of engineering education, the study also included an online 
social behavior dimension to evaluate teamwork and resource sustainability awareness, 
measuring students’ ability to collaborate, divide tasks, and solve problems effectively, 
as well as their attitudes toward efficient resource usage and material conservation. 
 

4.1 Data Analysis Results 
To analyze the experimental data, pre-test and post-test scores from all scales were 
compared between the experimental and control groups. Levene’s test confirmed 
homogeneity of variance, validating the use of ANOVA for statistical analysis. 
 
For digital literacy skills (as shown in Table 1), the experimental group demonstrated 
substantial gains in technical application proficiency (F = 84.53, p < 0.01), indicating 
an enhanced ability to use laboratory tools effectively. Experimental operation skills 
also improved significantly (F = 81.23, p < 0.05), reflecting greater accuracy in 
component identification, wiring, and tool usage. Error diagnosis and correction 
abilities showed notable improvements (F = 90.32, p < 0.01), as students in the 
experimental group resolved errors more efficiently with the aid of real-time feedback. 
 
However, improvements in digital media information management skills were not 
statistically significant (p = 0.54). This may be attributed to the convenience of the 
machine vision guidance system, which reduced the need for students to independently 
search for and manage experiment-related information. The automated guidance likely 
minimized reliance on external resources, resulting in limited variation in this 
dimension. 
 
Collaborative learning and resource sustainability awareness, measured using the 
online social behavior scale, also exhibited marked improvement (F = 76.45, p < 0.05; 
F = 73.24, p < 0.05). These results highlight the systems effectiveness in fostering 
teamwork and promoting resource-conscious practices in laboratory environments. 
 

Table 1. ANOVA Analysis on Sustainable Digital Literacy Skills Scale 
variable SS df MS F p Partial η2 

Technical Application Proficiency 72.60 1 72.60 84.53 0.002** 0.496 

Experimental Operation Skills 144.62 1 143.12 81.23 0.013* 0.486 

Error Diagnosis and Correction Abilities 146.86 1 146.83 90.32 0.009** 0.512 

Digital Media Information Management Skills 69.83 1 0.84 69.83 0.54 0.010 

Collaborative Learning and Teamwork 147.27 1 147.27 76.45 0.043* 0.518 



Resource Sustainability Awareness 146.12 1 146.10 73.24 0.041* 0.501 

Note. *p < .05, **p < .01, ***p < .001 

 
For engineering self-efficacy (as shown in Table 2), the experimental group 
demonstrated significant improvements across all dimensions. Engineering task 
confidence increased notably (F = 45, p < 0.001), reflecting enhanced technical skill 
mastery. Problem-solving abilities showed significant gains (F = 41.4, p < 0.001), 
indicating better error resolution strategies. Motivation for engineering learning also 
improved (F = 24.48, p < 0.001), suggesting that the system created a supportive and 
engaging learning environment. 
 

Table 2. ANOVA Analysis on the Engineering Self-Efficacy Scale 
variable SS df MS F p Partial η2 

Engineering Task Confidence 150 1 150 45 <.001*** 0.35 

Problem-Solving Abilities 133 1 132.88 41.4 <.001*** 0.333 

Motivation for Engineering Learning 136.4 1 136.42 24.48 <.001*** 0.228 

Note. *p < .05, **p < .01, ***p < .001 

 

4.2 Discussion and Implications 
The findings demonstrate that the intelligent assistive system significantly enhanced 
students technical skills, digital literacy, and self -efficacy, as well as their teamwork 
and resource sustainability awareness (as shown in Tables 3 and 4). The experimental 
group consistently outperformed the control group, underscoring the system’s 
effectiveness in addressing both technical and social learning challenges. For instance, 
in error diagnosis and correction, the control group’s scores showed minimal change 
(pre-test: 3.01, post-test: 3.03), whereas the experimental group exhibited substantial 
improvement (pre-test: 2.17, post-test: 4.02). These results highlight the limitations of 
traditional instruction and the advantages of intelligent systems in developing essential 
problem-solving capabilities. 
 

Table 3. Pre-test and Post-test Mean and Standard Deviation of the Sustainable 
Digital Literacy Skills Scale 

variable 

EG(N=42) CG(N=42) 

Pre-test Post-test Pre-test Post-test 

M SD M SD M SD M SD 

Technical Application 
Proficiency 

3.01 0.50 4.01 0.49 3.96 0.48 3.02 0.50 



Experimental Operation 
Skills 

3.03 0.33 4.03 0.50 3.54 0.49 3.04 0.73 

Error Diagnosis and 
Correction Abilities 

2.17 0.49 4.02 0.51 3.01 0.50 3.03 0.41 

Digital Media Information 
Management Skills 

3.00 0.48 3.10 0.49 3.02 0.47 3.03 0.46 

Collaborative Learning 
and Teamwork 

2.73 0.49 4.01 0.50 3.00 0.25 3.02 0.48 

Resource Sustainability 

Awareness 
3.02 0.48 4.02 0.49 3.41 0.50 3.03 0.24 

 
Table 4. Pre-test and Post-test Mean and Standard Deviation of Self-Efficacy 

variable 

EG(N=42) CG(N=42) 

pretest posttest pretest posttest 

M SD M SD M SD M SD 

Engineering Task 

Confidence 
15.3 1.91 21.8 3.01 15.4 1.6 22.5 3.08 

Problem-Solving Abilities 16.6 1.91 19.8 2.12 16.7 1.3 17.3 1.33 

Motivation for 

Engineering Learning 
12.8 1.92 15 2.39 12.5 2.1 12.5 2.46 

 
Beyond individual outcomes, the system fostered collaboration and sustainability 
awareness, preparing students to approach engineering challenges with a socially 
responsible perspective. By equipping students with tools to effectively leverage digital 
resources and promoting innovative laboratory practices, the system aligns with the 
goals of sustainable engineering education. 
 
5. Discussion  
In today’s digital era, individuals must not only recognize when information is needed 
but also effectively locate, evaluate, and utilize that information. This study extends 
traditional digital literacy by incorporating principles of sustainable engineering 
literacy into electronics and circuit laboratory education. Beyond technical 
competencies, sustainable engineering literacy encourages students to consider the 
broader implications of engineering practices, such as resource efficiency and ethical 
responsibility. By fostering both technical and sustainability-focused skills, the 
intelligent grading and learning assistance system supports the goals of innovative and 
inclusive engineering education. 
 
Sustainable Digital Literacy Skills 



The findings reveal that while technical application proficiency, experimental operation 
skills, and error diagnosis improved significantly, digital media information 
management skills did not show substantial gains. This outcome may be attributed to 
the convenience offered by the machine vision guidance system, which minimized the 
need for students to independently search for and manage experiment-related 
information. The structured feedback and automated processes likely reduced 
opportunities for students to engage with broader digital resources, limiting the 
development of resource management competencies. These results suggest that while 
intelligent systems enhance efficiency and reduce learning barriers, they may 
inadvertently restrict the growth of critical skills related to autonomous information 
handling. 
 
To address this limitation, future system designs could incorporate tasks that encourage 
students to seek, evaluate, and integrate external information. For example, integrating 
features that require students to analyze data beyond the system’s direct guidance could 
foster deeper engagement with digital resources, bridging the gap between structured 
assistance and independent digital literacy development. 
 
Engineering Self-Efficacy 
The system significantly enhanced engineering self-efficacy, with improvements noted 
in task confidence, problem-solving abilities, and learning motivation. The real-time 
feedback and automated grading empowered students to overcome challenges and 
boosted their confidence in conducting experiments, underscoring the importance of 
actionable feedback in sustaining engagement and fostering a growth mindset [91]. 
 
Regarding problem-solving abilities, the system encouraged iterative learning by 
allowing students to detect and correct errors, reinforcing their theoretical 
understanding and resilience in facing engineering challenges. However, overly 
difficult tasks or rigid guidance may hinder engagement, highlighting the need for 
balanced instructional design. Motivation also increased due to reduced frustration and 
a sense of steady progress. The relevance of system-supported experimental tasks to 
real-world applications further strengthened student enthusiasm and persistence in 
engineering learning [92]. 
 
6. Discussion 
This study investigated the integration of computer vision and deep learning 
technologies into electronics and circuit laboratory education. The results demonstrated 
that AI-powered assessment systems can enhance teaching efficiency, support 



sustainable use of educational resources, and cultivate students’ engineering literacy. 
By addressing limitations in traditional laboratory instruction, particularly binary 
grading and lack of real-time feedback, the system improved students’ ability to 
troubleshoot, iterate, and apply theoretical concepts in hands-on settings. 
 
Students exhibited significant gains in engineering self-efficacy, including increased 
task confidence, better problem-solving abilities, and stronger motivation to engage in 
experimental learning. These improvements can be attributed to the system’s ability to 
deliver immediate diagnostic feedback and personalized guidance. However, the 
structured nature of the feedback may reduce students’ opportunities to independently 
manage learning resources, potentially affecting their development of digital 
information management skills. 
 
This limitation suggests that while intelligent systems can provide critical scaffolding, 
designers must consider how to preserve a balance between guidance and learner 
autonomy. Furthermore, the system was evaluated primarily in a university electronics 
lab environment, which may not fully reflect broader educational contexts or subject 
domains. The focus on breadboard-based component recognition limits its 
generalizability to other types of engineering laboratories. 
 
Future research should investigate the applicability of such intelligent systems in other 
engineering domains, including mechanical, civil, or chemical engineering experiments. 
The integration of remote-access or virtual laboratory modules could also promote 
inclusivity by supporting students in geographically or economically disadvantaged 
settings. In addition, longitudinal studies are needed to assess how such systems 
influence students’ long-term skills in innovation, independent problem-solving, and 
sustainable thinking. 
 
7. Conclusion 
This research presents a practical and effective approach to integrating intelligent 
technologies into engineering education, specifically in the context of electronics and 
circuit laboratories. Through the combination of computer vision, deep learning, and a 
dynamic feedback mechanism, the proposed system addresses the longstanding 
limitations of traditional laboratory instruction, including rigid assessment formats and 
lack of timely guidance. 
 
The implementation of the system demonstrated clear benefits in student engagement, 
self-efficacy, and experimental accuracy. These improvements reflect the system’s 



capacity to foster personalized learning pathways, reduce student frustration caused by 
repetitive failure, and support the development of essential engineering competencies. 
Moreover, the system contributes to broader educational goals aligned with the 
Sustainable Development Goals (SDGs), particularly SDG 4 (Quality Education), by 
enhancing learning accessibility, assessment fairness, and instructional quality. 
 
By automating the assessment process while maintaining pedagogical integrity, the 
system not only improves the efficiency of instruction but also reduces faculty 
workload, allowing educators to focus more on mentoring and higher-level conceptual 
teaching. The system’s adaptability also presents an opportunity to serve as a blueprint 
for similar AI-based tools in other STEM fields. 
 
In the future, efforts should focus on expanding the system’s domain coverage, 
improving its interoperability with remote learning environments, and integrating data-
driven learning analytics to further personalize student feedback. These enhancements 
will ensure that AI-driven educational tools not only meet current instructional needs 
but also evolve to address emerging educational challenges in the era of Industry 5.0 
and lifelong learning. 
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